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Abstract

Care needs to be taken when considering the viscous dissipation in the energy conservation formulation of the natural convection
problem in fluid-saturated porous media. The unique energy formulation compatible with the First Law of Thermodynamics informs
us that if the viscous dissipation term is taken into account, also the work of pressure forces term needs to be taken into account. In
integral terms, the work of pressure forces must equal the energy dissipated by viscous effects, and the net energy generation in the overall
domain must be zero. If only the (positive) viscous dissipation term is considered in the energy conservation equation, the domain
behaves as a heat multiplier, with an heat output greater than the heat input. Only the energy formulation consistent with the First
Law of Thermodynamics leads to the correct flow and temperature fields, as well as of the heat transfer parameters characterizing
the involved porous device. Attention is given to the natural convection problem in a square enclosure filled with a fluid-saturated porous
medium, using the Darcy Law to describe the fluid flow, but the main ideas and conclusions apply equally for any general natural or
mixed convection heat transfer problem. It is also analyzed the validity of the Oberbeck–Boussinesq approximation when applied to nat-
ural convection problems in fluid-saturated porous media.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

There is an increasing interest in the study of natural
convection in fluid-saturated porous media, as proved by
the explosive growth in the literature on the subject, and
also an increasing interest in the consideration of the vis-
cous dissipation effects on the flow and temperature fields,
as well as on the heat transfer performance of the involved
devices. From an order of magnitude analysis it can be con-
cluded that the viscous dissipation can be neglected in
many situations of practical interest, both for domains
filled with a clear fluid or for domains filled with fluid-sat-
urated porous media. This is, however, a subject that
attracts many research workers and, in particular, special
attention is being devoted to the natural convection in
enclosures filled with a fluid-saturated porous medium
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including the viscous dissipation effects. In this work, it is
studied the natural convection in a square enclosure, but
the main results and conclusions apply to any natural or
mixed convection problem in fluid-saturated porous media.
The corresponding problem, relative to a square enclosure
filled with a clear fluid, has been studied recently by Costa
[1], and the interest on this problem can be assessed by the
references cited herein and also by the very recent works of
Pons and Le-Queré [2–4].

Going on to the literature, one can find many recent
works concerning the natural convection in fluid-saturated
porous media, including viscous dissipation effects. Exam-
ples of works considering the Darcy Law to describe the
fluid flow are these of Nakayama and Pop [5], Magyari
and Keller [6], Rees et al. [7], Saeid and Pop [8] and Rees
[9]. In the work of Al-Hadhrami et al. [10] it is considered
the Brinkman extension of the Darcy Law, and a quadratic
drag term on the momentum equation is considered in the
works of Murthy and Singh [11], Murthy [12], Tashtoush
[13] and Magyari et al. [14]. The book by Nield and Bejan
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Fig. 1. The natural convection problem in a differentially heated square
enclosure filled with a fluid-saturated porous medium.

Nomenclature

cP constant pressure specific heat
Da Darcy number
E total energy
Ec Eckert number
g gravitational acceleration
g gravitational acceleration vector
H height
ĥ specific enthalpy
k thermal conductivity
K permeability
m mass
Nu Nusselt number
p pressure
Pr Prandtl number
q heat flux vector
_Q heat flow
Ra Darcy-modified Rayleigh number
_S entropy flow
_S000 volumetric rate of entropy generation
t time
T temperature
u,v Cartesian velocity components
û specific internal energy
V volume
v surface velocity vector
V intrinsic velocity vector

_W mechanical power
x,y Cartesian co-ordinates

Greek symbols

a thermal diffusivity
b volumetric expansion coefficient
DT temperature difference
e porosity
l dynamic viscosity
m kinematic viscosity
q density
s temperature ratio
w (conservative) streamfunction

Subscripts

C cold (lower temperature) value
CD conduction
D viscous dissipation
f fluid
gen generation
H hot (higher temperature) value
m combined
0 reference value
s solid

* dimensionless
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[15] gives a very good description about the relevance of
the subject of heat transfer in porous media, and about
the models used to take into account the different effects
on the natural convection in fluid-saturated porous media.
Nield [16] gives an explanation why the quadratic drag
term on the momentum equation (which does not contain
the viscosity in an explicit way) must be taken into account
as a dissipation term. A study of the entropy generation
associated with the natural convection heat transfer prob-
lem in an inclined square enclosure filled with a fluid-satu-
rated porous medium was conducted by Baytas [17]. In this
work, the viscous dissipation term is not taken into account
in the energy conservation equation, but it is taken into
account in the entropy generation equation.

In all the previously referred works, concerning natural
convection in fluid-saturated porous media, with the excep-
tion of the book by Nield and Bejan [15], no reference is
made to the work of pressure forces term when the viscous
dissipation term is taken into account in the energy conser-
vation equation. In fact, as it is shown in the present work,
both terms need to be considered in order to have the
unique energy conservation formulation that is consistent
with the First Law of Thermodynamics.

If we consider an enclosure filled with a fluid-saturated
porous medium, like the one presented in Fig. 1, where
steady natural convection takes place, and the viscous dis-
sipation term is considered in the energy conservation
equation, a net heat generation takes place in the enclosure
and heat leaving the enclosure is greater than that entering
the enclosure. Such an enclosure behaves like a heat multi-
plier, which is inconsistent regarding the First Law of Ther-
modynamics. It must be noted that viscous dissipation is
due to fluid motion, and that fluid motion is not forced
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(originated by an external mechanical action) but it is the
result of the expansion–contraction cycle experienced by
the fluid flowing in the enclosure. Fluid motion results
from the use of some of the heat entering the enclosure
to increase the temperature of the fluid and thus to decrease
its density. Fluid motion is associated with the work of
pressure forces involved in the expansion–contraction cycle
experienced by the fluid, and the unique energy conserva-
tion formulation consistent with the First Law of Thermo-
dynamics is that considering, simultaneously, the viscous
dissipation and the work of pressure forces in the energy
conservation equation.

If only the viscous dissipation term is considered in the
energy conservation equation, results are not valid regard-
ing the First Law of Thermodynamics, and the flow and
temperature fields are also very different from the ones
obtained using the consistent energy conservation formula-
tion. Also very different are the results obtained to express
the thermal performance of the fluid-saturated porous
devices where natural convection takes place. Additionally,
it is obtained a very useful criterion to assess if the energy
formulation of the problem is correct or not, and if the
Oberbeck–Boussinesq approximation can be used when
dealing with natural convection in fluid-saturated porous
media.

2. Thermodynamics and analysis of the problem

Consider the closed square enclosure filled with an iso-
tropic and homogeneous porous medium of permeability
K, as presented in Fig. 1, whose left and right vertical walls
are maintained at constant temperatures TH and TC,
respectively. The porous medium is saturated with a fluid
that expands when its temperature increases (b > 0), even
if some particular fluids and/or conditions can be pointed
out for which b < 0. The upper and lower horizontal walls
are assumed to be perfectly insulated.

Close to the hot isothermal wall the fluid is heated and
expands, thus giving rise to an ascending motion. The fluid
changes its direction when reaching the neighborhood of
the top horizontal wall, proceeds nearly in the horizontal
direction from left to right, and changes direction when
reaching the neighborhood of the cold vertical wall. As
the fluid releases heat there, its temperature decreases, it
becomes denser and sinks down. Close to the lower hori-
zontal wall the flow is essentially horizontal. In the com-
bined medium (solid porous matrix and saturating fluid)
heat is transferred by conduction, and it is assumed that
local thermal equilibrium exists. A closed loop is estab-
lished for the fluid flow, and the combined conduction–
convection action transfers heat from the hot wall to the
cold wall.

An equilibrium situation is reached for which the tem-
perature difference gives rise to the fluid motion and the
viscous dissipation action brakes the fluid flow. From a
thermodynamic viewpoint this situation can be seen in
the following way: the temperature difference TH � TC
could move a thermal engine if it were present, connected
to a fan (fluid current due to the expansion–contraction
cycle), but a brake limits the operation of that thermal
engine (viscous dissipation acts as a brake for the fluid cur-
rent). When equilibrium is reached, power obtained from
the expansion–contraction cycle is viscously dissipated as
heat. This situation was discussed before in [1] for the
enclosure filled with a clear fluid. The interpretation of
the natural convection in enclosures as a heat engine was
explored in [1,18,19] for an enclosure filled with a clear
fluid, the main aspects of such an analysis applying also
for the enclosure filled with a fluid-saturated porous
medium.

First Law of Thermodynamics applied for the overall
enclosure (a closed thermodynamic system) gives
dE=dt ¼ ð _QH þ _QCÞ þ _W [20], where E is the total energy,
E = m[û + (1/2)mjVj2 + gy], and _QH, _QC and _W are taken
as positive when entering the thermodynamic system and
negative otherwise. If the system operates in steady-state
conditions then dE/dt = 0. Additionally, as there is no
any rotating shaft or other mechanical device through
which the enclosure exchanges mechanical work with its
neighborings then _W ¼ 0. In this way, for the overall enclo-
sure _QHð> 0Þ þ _QCð< 0Þ ¼ 0, that is,

_Q ¼ j _QCj ¼ j _QHj ð1Þ

This result is independent of the medium that fills the
enclosure, and it has been explored before for the enclosure
filed with a clear fluid [1].

The result given by Eq. (1) seems to be a strange result,
as viscous dissipation would act like an heat source in the
enclosure thus leading to j _QCj > j _QHj. In fact, care needs
to be taken when analyzing the present problem, as the
fluid flow that gives rise to the viscous dissipation is not
imposed by any external means (no forced flow), but it
results from the thermal levels imposed to the enclosure
walls, through the expansion–contraction cycle (work of
pressure forces) experienced by the fluid. In this way, vis-
cous dissipation can only be considered if the work of pres-
sure forces is also considered in the energy conservation
equation. Viscous dissipation acts like a heat source and
the work of pressure forces acts like a heat sink, and glob-
ally, over the overall enclosure, their absolute values are
equal, even if locally they can be different. From the fore-
going arguments, fluid flow is a result of the heat flow
crossing the enclosure, as well as the viscous dissipation.
In the equilibrium steady state situation no heat is gained
or lost by the enclosure, and Eq. (1) prevails, the unique
result consistent with the First Law of Thermodynamics.
Only when a heat source of different nature than viscous
dissipation or the work of pressure forces is present, such
as an exothermic chemical reaction or an electrical resis-
tance, does j _QCj > j _QHj.

The result given by Eq. (1) can be used advantageously
to obtain the overall entropy generation rate in the enclo-
sure as
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_Sgen ¼ _Q
1

T C

� 1

T H

� �
ð2Þ

a result that is independent of the medium that fills the
enclosure. However, it is to be noted that the numerical
value of _Q depends on the medium that fills the enclosure.
Looking in detail at the mechanisms of entropy generation
in the enclosure, it is

_Sgen ¼ ð _SgenÞCD þ ð _SgenÞD ð3Þ
where ð _SgenÞCD is the rate of entropy generation due to heat
conduction trough the combined medium (fluid and porous
matrix) and ð _SgenÞD is the rate of entropy generation due to
viscous dissipation. Each of these terms can be evaluated
alone [21], but the overall rate of entropy generation in
the domain can be evaluated from an overall entropy bal-
ance for the enclosure, as given by Eq. (2).

3. Physical modeling

3.1. Momentum equation

For the enclosure under analysis, for which the fluid
flow is described through the Darcy Law, velocity is
expressed as

v ¼ �K
l
ðrp � qgÞ ð4Þ

where v is the superficial velocity (or the Darcy velocity),
averaged over the total cross section of a representative ele-
ment of the porous medium. However, the term $p refers
to the volume averaged pressure of the fluid, over the vol-
ume of fluid (an intrinsic value), and �qg is the force
applied to the fluid, by unit of volume of fluid, that is, it
is also an intrinsic term. Intrinsic term is a term referred
only to the volume of fluid contained in a given volume
of fluid-saturated porous medium [15]. Intrinsic velocity
V and the Darcy velocity v are related through the Dup-
uit–Forchheimer relationship according to v = eV [15].
Assuming that gravity acts downwards in the vertical direc-
tion, components of velocity are obtained explicitly as

u ¼ �K
l

op
ox

; v ¼ �K
l

op
oy
þ qg

� �
ð5Þ

The mass conservation equation for steady flow reads as

o

ox
ðquÞ þ o

oy
ðqvÞ ¼ 0 ð6Þ

where u and v are the Cartesian components of v, and the
(conservative) streamfunction w can be defined through its
first-order derivatives as

ow
oy
� qu; � ow

ox
� qv ð7Þ

From the foregoing equations, assuming that pressure is a
continuous function to its second-order derivatives, a Pois-
son equation can be obtained from which the streamfunc-
tion field can be evaluated, in the form:
0 ¼ o

ox
l

Kq
ow
ox

� �
þ o

oy
l

Kq
ow
oy

� �
� o

ox
ðqgÞ ð8Þ

For the problem under analysis temperature is made
dimensionless as

T � � ðT � T 0Þ=DT ð9Þ
where T0 = TC is the minimum temperature value in the
enclosure, and DT is the maximum temperature difference
in the domain, DT = (TH � TC). In this way, a dimensional
temperature can be obtained from the dimensionless tem-
perature as T = T0(sT* + 1), where s = DT/T0. By its
own turn, density is assumed to vary with temperature
through a first-order polynomial as

q ¼ q0½1� bðT � T 0Þ� ð10Þ
where q0 is the density for the reference temperature T0 and
b is the volumetric expansion coefficient. The problem is
analyzed in its dimensionless form, and the governing vari-
ables are made dimensionless as

ðx�; y�Þ � ðx; yÞ=H ð11Þ
ðu�; v�Þ � ðu; vÞ=ðam=HÞ ð12Þ
w� � w=ðq0amÞ ð13Þ

If the fluid is taken as an ideal gas then bT = 1, and

b� ¼
b
b0

¼ T 0

T
¼ 1

sT � þ 1
; q� ¼

q
q0

¼ 1

sT � þ 1
¼ b� ð14Þ

In this work, an ideal gas means only that bT = 1, and not
that a closed thermodynamic relationship exists between
temperature and pressure. In other words, the fluid is taken
as incompressible (density unaffected by pressure changes)
but dilatable (density affected by temperature changes).
For any fluid, the temperature is obtained from the energy
conservation equation and pressure is obtained from (or as
part of) the flow solution. In this case, if the fluid is taken
as an ideal gas, the dimensionless version of Eq. (8) is

0 ¼ o

ox�

1

q�

ow�
ox�

� �
þ o

oy�

1

q�

ow�
oy�

� �
þ Raq2

�
oT �
ox�

ð15Þ

where Ra is the Darcy-modified Rayleigh number

Ra � gb0DTKH
mam

ð16Þ

noting that b0 = 1/T0 in this case.
If, instead, the fluid cannot be taken as an ideal gas then

b� ¼
b
b0

¼ 1; q� ¼
q
q0

¼ 1� b0DTT � ð17Þ

and the dimensionless version of Eq. (8) is

0 ¼ o

ox�

1

q�

ow�
ox�

� �
þ o

oy�

1

q�

ow�
oy�

� �
þ Ra

oT �
ox�

ð18Þ

the Darcy-modified Rayleigh number being the same as
defined in Eq. (16), but in this case b0 is a constant value,
independent of temperature.
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If the Oberbeck–Bousinesq approximation is consid-
ered, which assumes that density is constant everywhere
exception made to the buoyancy term [15], Eq. (18) applies
but with the terms 1/q* = 1 within brackets (convective
terms).

3.2. Energy conservation equation

Before considering the differential form of the energy
conservation equation to be solved in order to obtain the
temperature field, some previous explanation is given
about the derivation of such an equation. This is made
because a careful analysis of such an equation is needed,
and its detailed derivation is not usual in the convection
in porous media literature.

Following Bird et al. [22], the (total) energy conserva-
tion equation for the fluid, for a steady situation, can be
stated in vector form as

0 ¼ �er � 1

2
qjVj2

� �
V� eðr � qfÞ � er � ðqûÞV

� erp � V� epðr � VÞ þ eqðV � gÞ ð19Þ

where the dot means scalar product, û is the specific inter-
nal energy of the fluid and only the term that is not related
with the fluid velocity, qf, was referenced with subscript f.
In this equation it is assumed that, when the Darcy Law
is used to describe the flow field, there are no shear stresses
in the fluid and thus there is no work of the shear stresses in
the energy conservation equation for the fluid. This equa-
tion is general, provided that there is no work of shear
stresses, and it applies both when buoyancy effects are pres-
ent or not, with g = 0 when the buoyancy effects are absent.
The (total) energy conservation equation for the solid
matrix, also for a steady situation, can be stated in vector
form as

0 ¼ �ð1� eÞðr � qsÞ ð20Þ

Eq. (19) can be rewritten using the Dupuit–Forchheimer
relationship as

0 ¼ �r � 1

2e
qjvj2

� �
v� eðr � qfÞ � r � ðqûÞv�rp � v

� pðr � vÞ þ qðv � gÞ ð21Þ

From Eq. (4) it can be shown that

v � v ¼ jvj2 ¼ �K
l
½v � rp � qðv � gÞ� ð22Þ

and it is thus �v Æ $p + q(v Æ g) = (l/K)jvj2, which, when
substituted in Eq. (21) leads to

0 ¼ �r � 1

2e
qjvj2

� �
v� eðr � qfÞ � r � ðqûÞv� pðr � vÞ

þ l
K
jvj2 ð23Þ

where the term �p($ Æ v) can be identified as the reversible
rate of internal energy increase by unit of volume, by com-
pression [22], and it must be retained that the terms involv-
ing velocity refer to the fluid only.

When dealing with a clear fluid, the internal energy con-
servation equation (sometimes referred to as the thermal
energy equation) is obtained by subtracting the mechanical
energy equation (or kinetic energy equation) from the total
energy equation [22]. In that case, no kinetic energy terms
remain in the internal energy equation, because the inertial
terms of the momentum equation give rise to a convective
kinetic energy term in the kinetic energy equation, and the
two kinetic energy terms cancel in the thermal energy equa-
tion. When the Darcy Law is used, a kinetic term remains
in the energy equation, Eq. (23), which will be referred here
as the thermal energy equation for the fluid.

This equation can be rewritten, using the concept of
material derivative, as

q
Dû
Dt
¼ �r � 1

2e
qjvj2

� �
v� eðr � qfÞ � pðr � vÞ þ l

K
jvj2

ð24Þ
It is to be noted that, for a steady situation, the energy con-
servation equation can be written in this form, as the
unsteady terms are effectively null (no energy accumulation
in the fluid or in the solid matrix) and that the convective
terms refer to the fluid phase only.

From the definition of specific enthalpy (for the fluid),
ĥ ¼ ûþ p=q, it is

Dĥ
Dt
¼ Dû

Dt
þ 1

q
Dp
Dt
� p

q2

Dq
Dt

ð25Þ

and invoking the mass conservation equation it is
(p/q)(Dq/Dt) = � p($ Æ v), and the energy conservation
equation for the fluid becomes

q
Dĥ
Dt
�Dp

Dt
¼ �r � 1

2e
qjvj2

� �
v� eðr � qfÞ þ

l
K
jvj2 ð26Þ

From thermodynamic principles [20] it can be written
that

q
Dĥ
Dt
¼ qcP

DT
Dt
þ ð1� bT ÞDp

Dt
ð27Þ

and Eq. (26) becomes

qcP
DT
Dt
� bT

Dp
Dt
¼ �r � 1

2e
qjvj2

� �
v� eðr � qfÞ þ

l
K
jvj2

ð28Þ
The energy conservation equation for the fluid, Eq. (28),

can be added to the energy conservation for the solid
phase, Eq. (20), to give the thermal energy conservation
equation for the steady fluid-saturated porous medium as

qcP
DT
Dt
� bT

Dp
Dt
¼ �r � 1

2e
qjvj2

� �
v� ðr � qmÞ þ

l
K
jvj2

ð29Þ
where qm = eqf + (1 � e)qs.
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If a quadratic drag term is considered, expressing the
momentum equation as $p � qg = �[(l/K) + cFK�1/2qjvj]v,
as proposed by Nield and Bejan [15], it can be shown that
�v Æ $p + q(v Æ g) = [(l/K) + cFK�1/2qjvj]jvj2. In this case,
the viscous dissipation term entering in the energy conserva-
tion equation, as well as in the entropy generation equation,
is not only (l/K)jvj2 but [(l/K) + cFK�1/2qjvj]jvj2, and the
quadratic drag term, even if it does not include the viscosity
in an explicit way, effectively enters in these equations [16].

Eq. (29) can be rewritten extensively, in the conservative
form, as

o

ox
½qucP ðT � T 0Þ� þ

o

oy
½qvcP ðT � T 0Þ�

¼ o

ox
km

oT
ox

� �
þ o

oy
km

oT
oy

� �
þ bT u

op
ox
þ v

op
oy

� ��

þ l
K
jvj2 � 1

2e
o

ox
qujvj2
� �

þ o

oy
qvjvj2
� �� �	

ð30Þ

This equation can be worked using Eq. (5) to express the
pressure gradient components, and made dimensionless
to give

o

ox�
ðq�u�T �Þ þ

o

oy�
ðq�v�T �Þ

¼ o
2T �
ox2
�
þ o

2T �
oy2
�
� 1

2e
Ec

o

ox�
ðq�u�jv�j

2Þ
�

þ o

oy�
ðq�v�jv�j

2Þ
�

� b0T 0b�
EcPr
Da
ðsT � þ 1Þ jv�j2 þ

Ra
b0DT

q�v�

� �
þ EcPr

Da
jv�j2 ð31Þ

where

Ec � ðam=HÞ2

cPDT
ð32Þ

Pr � m=am ð33Þ

Da � K

H 2
ð34Þ

When dealing with a domain filled with a clear fluid,
thermal energy conservation equation, obtained as the
total energy conservation equation subtracted of the
mechanical energy conservation equation (kinetic energy
equation) leads to an equation that does not include a
kinetic energy term. In the case of a fluid-saturated porous
medium, the energy conservation equation includes a con-
vective term of the kinetic energy. However, as the Darcy
number is usually a small value, and the Prandtl number
is close to the unity, the kinetic energy term is some orders
of magnitude lower than the other terms, and it can be
neglected in the energy conservation equation, what was
confirmed from numerical experiments in this work. This
point forward, in this work, this term of kinetic energy will
not be considered in the thermal energy conservation
equation.
The two last terms in Eq. (31) are identified as the work
of pressure forces and as the viscous dissipation, respec-
tively. Application of the First Law of Thermodynamics
to the overall enclosure gives

ð� _QH � _QCÞ
kmDT

þ
Z

V �
�b0T 0b�

EcPr
Da
ðsT � þ 1Þ

� jv�j2 þ
Ra

b0DT
q�v�

� �
dV � þ

Z
V �

EcPr
Da
jv�j2dV � ¼ 0

ð35Þ

where the integrals extend to the overall domain of the
enclosure. The volume integrals of the divergence of the
dimensionless heat flux were transformed into surface inte-
grals using the Gauss’ Theorem, and they give the dimen-
sionless heat flows (the Nusselt numbers) entering and
leaving the domain [1]. As _QH þ _QC ¼ 0, it isZ

V �

�b0T 0b�ðsT � þ 1Þ jv�j2 þ
Ra

b0DT
q�v�

� �
dV �

þ
Z

V �

jv�j2dV � ¼ 0 ð36Þ

Locally, the terms corresponding to the work of pressure
forces and to the viscous dissipation can be different. How-
ever, the integral of these two energy terms extended to the
overall enclosure must cancel as given by Eq. (36).

If the fluid is taken as an ideal gas it is b0T0b*(sT* +
1) = 1 and Eq. (31) becomes

o

ox�
ðq�u�T �Þ þ

o

oy�
ðq�v�T �Þ

¼ o
2T �
ox2
�
þ o

2T �
oy2
�
� EcPr

Da
Ra

b0DT
q�v� ð37Þ

q* being evaluated as q* = 1/(sT* + 1), as given by Eq.
(14). From this result it is thus concluded that if the flow
is essentially horizontal (v* = 0), no source or sink exists
in the energy conservation equation. This seems to be a
strange result, as the viscous dissipation is present ever
the fluid moves, no matter what the direction of the flow.
It must be retained that the flow close to the horizontal
walls of the enclosure is due only to the pressure gradient
(null buoyancy effect), the variations in pressure being
associated with the work of pressure forces that, locally,
balance the viscous dissipation. Going to Eq. (30) it can
be concluded that it is u > 0 and (op/ox) < 0 close to the
upper horizontal wall and u < 0 and (op/ox) > 0 close to
the lower horizontal wall. In both cases it is u(op/ox) < 0,
a term that, locally, balances the viscous dissipation term,
(l/K)jvj2. Result expressed by Eq. (36) becomes, in this caseZ

V �

q�v�dV � ¼ 0 ð38Þ

If the fluid cannot be taken as an ideal gas then b* = 1
and Eq. (31) becomes
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o

ox�
ðq�u�T �Þ þ

o

oy�
ðq�v�T �Þ

¼ o2T �
ox2
�
þ o2T �

oy2
�

þ EcPr
Da

�b0T 0ðsT � þ 1Þ jv�j2 þ
Ra

b0DT
q�v�

� �
þ jv�j2

� �
ð39Þ

q* being evaluated as q* = 1 � b0DTT*, as given by Eq.
(17). In this case, result expressed by Eq. (36) becomesZ

V �

�b0T 0ðsT � þ 1Þ jv�j2 þ
Ra

b0DT
q�v�

� �
þ jv�j2

� �
dV � ¼ 0

ð40Þ

If the Oberbeck–Bousinesq approximation is considered
then q* = 1 in Eqs. (39) and (40) (constant density every-
where except on the buoyancy term in the vertical momen-
tum equation).

Like as referred when dealing with an enclosure filled
with a clear fluid, also in the case of the enclosure filled
with a fluid-saturated porous medium, special care must
be taken when considering the viscous dissipation effects
in the energy conservation equation in order to have heat
transfer results consistent with the First Law of Thermody-
namics, noting that: (i) Result j _QCj ¼ j _QHj, or NuC = NuH,
is the unique respecting the First Law of Thermodynamics.
(ii) The fluid and temperature fields must be evaluated from
the correct (and complete) formulation of the energy con-
servation equation, including all the relevant sources and
sinks. (iii) Integration methods used must be consistent
with the result given by Eq. (36); and (iv) Assessment of
using the Oberbeck–Boussinesq approximation must be
related not only with the difference on the involved thermal
levels [23], but also on the verification of Eq. (40), noting
that the real influence of the density variations spreads over
the involved equations.
3.3. Entropy generation analysis

The volumetric entropy generation rate includes the
contributions of heat conduction and of viscous dissipa-
tion, being expressed as

_S000gen ¼
km

T 2

oT
ox

� �2

þ oT
oy

� �2
" #

þ l
KT
jv�j2 ð41Þ

In what concerns the total entropy generation in the overall
enclosure, as given by Eq. (2), it can be expressed as

_Sgen ¼ _Q
1

T C

� 1

T H

� �
¼ Nu _QCD

1

T C

� 1

T H

� �

¼ Nukm
s2

1þ s

� �
ð42Þ
where the overall Nusselt number is defined as

Nu �
_Q

_QCD

¼
_Q

kmðH � 1ÞðT H � T CÞ=H
ð43Þ

From Eq. (1) it must be NuC = NuH = Nu.
Making the overall entropy generation rate dimension-

less as

_Sgen;� ¼
_Sgen

kmðDT=T 0Þ
¼ Nu

s
1þ s

� �
ð44Þ

the dimensionless volumetric entropy generation rate is
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where the first term refers to heat conduction and the
second term refers to viscous dissipation, and it is _Sgen;� ¼R

V �
_S000gen;� dV �. Study of the entropy generation is important

for a better understanding of the convection heat transfer
processes, as illustrated by Mahmud and Fraser [24] for
some fundamental convective heat transfer problems.

3.4. Note about the numerical values of the dimensionless
parameters

When solving the problem in its dimensionless form, care
must be taken in what concerns the numerical values
assumed by the dimensionless governing parameters. For
air, water or other common fluids at room temperature, it
can be seen that practical laminar situations lead to Ra �
10 � 103 and Ec < � 10�9, parameters for which the dissi-
pation effects are not ‘visible’. In an attempt to increase the
importance of the viscous dissipation effects, it is tempting
to manipulate the values of the dimensionless parameters.
From Eqs. (16), (32) and (34) it can be obtained that

H ¼ Ra
EcPr
Da

� �
cP

gb0

� �
ð46Þ

Taking Ra = 103 and (EcPr/Da) = 10�3, for fluids at room
temperature it is: H = 3.1 · 104 m for air, H = 1.5 · 106 m
for water, and H = 2.8 · 105 m for oil, that is, non-realistic
values for the side length of the differentially heated square
enclosure filled with a fluid-saturated porous medium.

4. Numerical modeling and illustrative results

The natural convection problem in the square enclosure
filled with a fluid-saturated porous medium, with side
length H, was solved in its dimensionless form as given
by Eqs. (15) and (37) if the saturating fluid is taken as an
ideal gas, or as given by Eqs. (18) and (39) if the fluid
cannot be taken as an ideal gas. A control volume finite
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element method [25] was used, with a 101 · 101 non-uniform
mesh, expanding from the walls to the center with a geome-
tric expansion factor equal to 1.065. The numerical solution
was obtained when addition (extended to all the nodes of the
domain) of the absolute values of the residuals of each of the
dimensionless equations were lower than 10�8.

Results were obtained for different conditions as
detailed in Table 1, and maintaining constant the parame-
ters Pr = 1, DT = 10 K, T0 = 300 K and b0 = 1/T0 K�1. As
referred before, in Section 3, in this work ideal gas means
only that bT = 1, and not that a closed thermodynamic
relationship exists between temperature and pressure. For
any fluid, temperature is obtained from the energy conser-
vation equation and pressure is unnecessary as the flow
field is extracted from the (conservative) streamfunction
field. Viscous dissipation effects were considered in all the
analyzed cases.

From the results in the row 6 of Table 1 it is clearly
observed that erroneous results are obtained if only the vis-
cous dissipation term is taken into account in the energy
conservation equation. In this case, heat output is nearly
1.5 times the heat input, and the enclosure behaves like a
heat multiplier, violating the First Law of Thermodynam-
ics. Stronger heat multipliers of this kind were presented by
Saeid and Pop [8] and by Rees [9]. Entropy generation is
mainly due to viscous dissipation, but Eq. (2) could not
apply as the heat transfer results are not in accordance with
Eq. (1). The same conclusions apply equally to any situa-
tion for which only the viscous dissipation term is taken
into account (row 2 of Table 1).

It can be also observed that strong changes exist in the
heat transfer performance of the enclosure, given by the
Nusselt number, when the work of pressure forces is con-
sidered or not, as obtained comparing results on rows 1
and 2, and 5 and 6 of Table 1. Thermal performance of
the enclosure is considerably lower when the work of pres-
sure forces is not taken into account. It must be retained,
however, that results indicated in rows 2 and 6 of Table
1 are incorrect in what concerns the First Law of Thermo-
dynamics when applied to the overall enclosure.

If the fluid can be taken as an ideal gas, as for the situ-
ations in rows 4 and 8 of Table 1, very good results are
obtained in what concerns the verification of the First
Law of Thermodynamics, the Nusselt numbers evaluated
Table 1
Different conditions and terms in the energy conservation equation, Nusselt nu
overall viscous dissipation (always considered), D

*
, dimensionless overall wor

EcPr
Da

Ra Oberbeck–Boussinesq
approximation

Ideal gas Work of pressur

0.001 50 No No Yes
0.001 50 No No No
0.001 50 Yes No Yes
0.001 50 No Yes Yes
0.005 100 No No Yes
0.005 100 No No No
0.005 100 Yes No Yes
0.005 100 No Yes Yes
at the hot and cold vertical walls being very close to each
other. Also in these cases it is D* = �W*, within the limits
of the numerical approximations. In what concerns the
entropy generation analysis it is S* = 0.0580 + 0.0443 =
0.1023 for the row 4 of Table 1, and S* = 0.2166 +
0.2576 = 0.4742 for the row 8 of Table 1, where the first
values refer to the entropy generation due to heat conduc-
tion and the second values refer to viscous dissipation.
Using Eq. (44) to evaluate the overall dimensionless
entropy generation rate it is obtained that ð _Sgen;�Þ ¼
Nusðsþ 1Þ�1 ¼ 0:1029 for the situation listed in row 4 of
Table 1, and that ð _Sgen;�Þ ¼ Nusðsþ 1Þ�1 ¼ 0:4734 for the
situation listed in row 8 of Table 1. These overall results
for the entropy generation are in good agreement (taking
into account the introduced approximations) with the ones
evaluated from the separated heat conduction and viscous
dissipation contributions.

If the fluid could not be taken as an ideal gas, as for the
situations listed in rows 1, 3, 5 and 7 of Table 1, it can be
seen that slightly better results (regarding the verification of
the First Law of Thermodynamics) are obtained when the
Oberbeck–Boussinesq approximation is not used. It must
be noted that it is not obtained the expected complete ver-
ification of the First Law of Thermodynamics even if the
Oberbeck–Boussinesq approximation is not used, and that
consideration of the Oberbeck–Boussinesq approximation
leads to slightly higher values of the Nusselt numbers at
the vertical isothermal walls. In relative terms, using the
parameter (NuH � NuC)/NuH, it is obtained that the
deviation from the First Law of Thermodynamics is only
of 1.5% for the situation in the first row of Table 1, 1.4%
for the situation in row 3, 1.8% for the situation in row
5, and 1.8% for the situation in row 7 of Table 1. It must
be retained also that, contrarily to what happens when only
the viscous dissipation is considered in the energy conser-
vation equation, heat entering the enclosure is (slightly)
higher than heat leaving the enclosure, and it behaves like
a small heat sink. Further research needs to be made in
order to find the source of this slight inconsistency regard-
ing the First Law of Thermodynamics. It must be referred,
however, that results are consistent with Eq. (35) even if
they are not completely consistent with Eq. (36). For
example, for the situation corresponding to the row 5 of
Table 1, the dimensionless version of Eq. (35) gives
mbers at the hot and cold vertical walls, and results for the dimensionless
k of pressure forces, W

*
, and dimensionless entropy generation, S

*

e forces NuH NuC D
*

�W
*

S
*

3.291 3.243 0.0473 0.0950 0.1056
1.932 1.999 0.0670 0.0000 0.1282
3.322 3.274 0.0470 0.0948 0.1058
3.189 3.188 0.0450 0.0458 0.1023

15.21 14.93 0.273 0.551 0.4913
2.531 3.640 1.110 0.000 1.1891

15.34 15.07 0.271 0.5422 0.4913
14.68 14.67 0.262 0.279 0.4742



 (a)  (b)

 (c)  (d)

 (e)  (f)

Fig. 2. Contour plots of dimensionless variables for the situation listed in row 4 of Table 1: (a) (conservative) streamfunction; (b) temperature; (c) local
work rate of pressure forces; (d) local viscous dissipation rate; (e) local entropy generation rate associated with heat transfer; and (f) local entropy
generation rate associated with viscous dissipation.
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    (a)  (b)

    (c)   (d)

(e) (f)

Fig. 3. Base legend as for Fig. 2, now referring to the situation listed in row 8 of Table 1.
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� 15.21 + 14.93 � 0.273 + 0.551 = �0.002, and Eq. (35) is
verified within the approximation limits.

In what concerns the (conservative) streamfunction,
temperature, work of pressure forces, viscous dissipation,
entropy generation associated with heat conduction and
with viscous dissipation, some results are presented consid-
ering the fluid as an ideal gas for the conditions listed in
rows 4 and 8 of Table 1.

For the situation in row 4 of Table 1, streamfuncion
(Fig. 2a) and temperature (Fig. 2b) contour plots are not
very different from the ones typical in low intensity natural
convection in enclosures filed with fluid-saturated porous
media. In what concerns the local work of pressure forces,
in Fig. 2c, it is important close to the vertical walls and not
at the center of the enclosure as well as close to the insu-
lated horizontal walls. Local heating due to viscous dissipa-
tion is presented in Fig. 2d, and it is observed that it is
relevant close to all the enclosure walls. It is to be retained
that the absolute value of the work of pressure forces is
considerably higher than that of heat release by viscous dis-
sipation. However, viscous dissipation is positive every-
where, the work of pressure forces being negative close to
the hot vertical wall and positive close to the cold vertical
wall. Entropy generation rate due to heat conduction, pre-
sented in Fig. 2e, is higher where conduction heat transfer
is more intense, that is, close to the vertical isothermal
walls and, in particular, close to the lower half of the hot
wall and close to the upper half of the cold wall. Entropy
generation rate associated with viscous dissipation closely
follows the heat generation by viscous dissipation, as
obtained comparing Fig. 2f and d. Similar results for the
entropy generation rate were obtained also by Baytas
[17], even if the formulation of the problem presents some
differences as pointed in Section 1.

Considerable changes are observed when convection
and viscous dissipation increase in intensity (higher
Rayleigh and Eckert numbers, respectively), here corre-
sponding to the conditions listed in row 8 of Table 1.
Streamlines of Fig. 3a are very concentrated near the verti-
cal walls, thus indicating the high intensity of fluid flow
there. The central part of the enclosure corresponds nearly
to motionless fluid. Contour plots of temperature in Fig. 3b
indicate that there are strong thermal gradients close to the
vertical walls, and thus intense heat transfer there, in com-
plete agreement with the overall results for the Nusselt
number listed in Table 1. In what concerns local work of
pressure forces, in Fig. 3c, local heat generation associated
with viscous dissipation, in Fig. 3d, local entropy genera-
tion associated with heat conduction, in Fig. 3e, and local
entropy generation associated with viscous dissipation, in
Fig. 3f, these can be seen as similar to the ones in Fig. 2,
but now with the important changes very concentrated
close to the vertical walls. In this case, the relevant
phenomena and processes occur close to the vertical walls
of the enclosure, and its central part consists essentially
of motionless isothermal fluid, at a temperature
(TH + TC)/2.
In order to have a better picture about the involved
numerical values of heat transfer, viscous dissipation and
work of pressure forces, some more attention is given to
the situation corresponding to the last row of Table 1. If
the fluid that saturates the porous medium is air at room
temperature, with Pr = 0.73 	 1, for EcPr/Da = 0.001
and Ra = 100 Eq. (46) gives that H 	 3000 m, a consider-
ably high value as pointed in Section 3 in the note about
the numerical values of the dimensionless parameters. Eval-
uating the thermal conductivity of the saturated porous
medium as km ¼ ke

f k
ð1�eÞ
s [15], where e is porosity, it can

be taken km 	 0.1 W m�1 K�1. Values of Table 1 were
obtained for a temperature difference DT = 10 K between
the vertical walls of the enclosure, and heat transfer across
the enclosure can be evaluated from last row of Table 1 as
_QH ¼ NuHkmDT ¼ 14:68 W (by unit depth of the 2D enclo-
sure). This is a small heat transfer rate, but it is to be
retained that the enclosure has a low overall thermal con-
ductivity and that distance separating the hot and cold
walls has 3 km thickness. In what concerns the dimensional
values of the viscous dissipation and of the work of pressure
forces, they can be evaluated from last row of Table 1 as
_D ¼ _D�kmDT ¼ 0:262 W and _W ¼ _W �kmDT ¼ �0:279 W,
respectively (by unit depth of the 2D enclosure). These
are only small energy interactions that can be neglected in
many situations of practical interest. If, however, higher
values were considered for the dimensionless parameters,
the considered enclosure was more non-realistic, and the
energy interactions were greater.

5. Conclusions

Energy conservation in the natural convection heat
transfer problems in enclosures filled with fluid-saturated
porous media, including viscous dissipation effects, must
be carefully formulated, in order to be consistent with the
First Law of Thermodynamics. If the viscous dissipation
term is included in the energy conservation equation, also
the work of pressure forces needs to be considered. Viscous
dissipation results from fluid motion, which is due to the
expansion–contraction cycle experienced by the fluid in
the enclosure, and the work of pressure forces cannot be
neglected. If only the viscous dissipation term is taken into
account, the fluid-saturated porous medium behaves like a
heat multiplier, for which the energy conservation principle
is not respected.

Locally, the work of pressure forces can be different
from the energy released by viscous dissipation, but one
relevant result is that the integral of these terms, extended
to the overall fluid-saturated porous domain, must cancel.
This result comes from the direct application of the First
Law of Thermodynamics to the overall enclosure, and it
can be used to assess if the energy conservation principle
is being respected or not. This can be very important when
analyzing the relevance of the different terms of elaborated
fluid flow models to describe the fluid flow in fluid-satu-
rated porous media, like a Brinkman viscous term, a
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quadratic drag term, and inertial terms, or even the com-
plete model given by the Brinkman–Forchheimer equa-
tions. This same result was used to interpret the obtained
results for the Nusselt numbers, as well as to take some
considerations about the ideal gas model or the use of
the Oberbeck–Boussinesq approximation.

The main result of this work applies also to mixed con-
vection in fluid-saturated porous media, taking into consid-
eration that part of the viscous dissipation comes from the
forced flow (mechanical energy input) and part comes from
the work of pressure forces (associated with the expansion–
contraction cycle experienced by the fluid). Only the com-
plete (and correct) energy conservation equation can give
the correct results in what concerns the flow and tempera-
ture fields, and the heat transfer performance of the fluid-
saturated porous medium.

Increasing importance is being given to the thermody-
namic analysis of the natural convection problems in enclo-
sures, and a contribution is given by this work when the
enclosure is filled with a fluid-saturated porous medium.
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Actes du Congrès Français de Thermique 2004 Transferts en Milieux
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